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ABSTRACT
Fluency tasks are among the most common item formats for the assessment of certain cognitive abilities,

such as verbal fluency or divergent thinking. A typical approach to the psychometric modeling of such tasks
(e.g., Intelligence, 2016, 57, 25) is the Rasch Poisson Counts Model (RPCM; Probabilistic models for some
intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research, 1960), in which,
similarly to the assumption of (essential) τ-equivalence in Classical Test Theory, tasks have equal discrimina-
tions—meaning that, beyond varying in difficulty, they do not vary in how strongly they are related to the
latent variable. In this research, we question this assumption in the case of divergent thinking tasks, and
propose instead to use a more flexible 2-Parameter Poisson Counts Model (2PPCM), which allows to char-
acterize tasks by both difficulty and discrimination. We further propose a Bifactor 2PPCM (B2PPCM) to
account for local dependencies (i.e., specific/nuisance factors) emerging from tasks sharing similarities (e.g.,
similar prompts and domains). We reanalyze a divergent thinking dataset (Psychology of Aesthetics, Creativ-
ity, and the Arts, 2008, 2, 68) and find the B2PPCM to significantly outperform the 2PPCM, both outper-
forming the RPCM. Further extensions and applications of these models are discussed.

Keywords: fluency, divergent thinking, latent variable models, psychometrics.

A number of tasks used to measure cognitive abilities require examinees to generate as many productions
(words, ideas, instances of a category, etc.) as possible, out of a (practically) infinite pool, in a fixed amount
of time: These tasks are generally referred to as fluency tasks. Although the most famous instances of such
tasks are probably verbal fluency tasks (Thurstone, 1938), fluency tasks can actually be found in several
other domains. Notably, fluency tasks have been for a long time used as measures of general divergent
thinking ability (Kim, 2011; Torrance, 1966; Wallach & Kogan, 1965) and have been adapted to more
applied fields—for example to managerial (Myszkowski, Storme, Davila, & Lubart, 2015) and social creativ-
ity (Mouchiroud & Bernoussi, 2008). While a number of researchers (Hass, 2017a; Plucker, Qian, & Wang,
2011; Silvia et al., 2008) have discussed how alternative divergent thinking responses (e.g., the statistical rar-
ity of the responses as a measure of originality, subjective evaluations of the productions, combinations of
scoring approaches, semantic distance between the responses) could be used, we here focus on fluency
scores—the count of productions—and their psychometric modeling.

In creativity research, fluency scores are counts of the number of ideas generated by participants across
divergent thinking tasks. Consequently, modeling fluency scores commands a psychometric approach that is
appropriate for count variables. Therefore, researchers (Forthmann et al., 2016) have suggested to use the
Rasch Poisson Counts Model (RPCM; Rasch, 1960). Although the RPCM represents a major advance in the
modeling of fluency in divergent thinking tasks, we aim here to question one of its limitations: The fact that
it only accounts for item differences in difficulty, but not in discrimination. Discrimination parameters are
more commonly referred to as loadings, weights, or slopes in the factor analysis tradition and are used in
psychometric models to represent the strength and direction of the relation between an item and the latent
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variable. The assumption that all items have the same discrimination is generally referred to as the assump-
tion of (essential) τ-equivalence in Classical Test Theory (CTT). By using the RPCM, researchers assume
that two items that are equally difficult have the same distribution conditional on person ability.

Our first aim with the present research is to discuss how this assumption is questionable from the point
of view of item construction. Our second aim is to propose to use instead a 2-Parameter Poisson Counts
Model (2PPCM)—an instance of Generalized Latent Trait Modeling (Moustaki & Knott, 2000; Rabe-Hes-
keth, Skrondal, & Pickles, 2004)—which allows to characterize items by both difficulty and discrimination.
Third, we aim to demonstrate with an empirical example that including a discrimination parameter can
improve the psychometric modeling of fluency scores in divergent thinking. Finally, we discuss situations
where divergent thinking items are clustered—notably when some items have similar prompts (e.g., alternate
uses, consequences)—and how to model them with a bifactor extension of the 2PPCM.

FLUENCY SCORES IN CREATIVITY RESEARCH
Since the seminal work of Guilford (1967), creativity researchers have regarded ideational fluency as one

of the pillars of creative ability. Numerous empirical studies have shown indeed that there is a relation
between the number of productions and their quality, whether it is at the level of the career of an eminent
creator (Simonton, 2010), in group brainstorming tasks (Briggs & Reinig, 2010) or in divergent thinking
tasks (Silvia et al., 2008). In the 1960s, Osborn (1963, p. 131) summarized one of most commonly accepted
reasons why fluency should facilitate creativity: "the more ideas we produce, the more likely we are to think
up some that are good."

The appeal of using fluency scoring as an indicator of creativity also lies in the fact that it is easy to
operationalize from a methodological viewpoint. Researchers simply need to count the number of ideas or
productions generated by a participant or a group during the task. The double advantage of a count is that
(a) the implementation is straightforward and inexpensive—no need, for example, to recruit and train
judges—and (b) it is objective—contrary to some other divergent thinking scoring methods that for some
of them require raters.

Nevertheless, one cannot simply reduce creativity to fluency. This is the reason why creativity researchers
have investigated alternate scoring strategies for divergent thinking tasks, beyond fluency scoring. For exam-
ple, it has been recently advanced that creativity may be better captured through the semantic distance
between an individual’s responses (Hass, 2017b; Heinen & Johnson, 2018), or by using holistic ratings of all
the ideas generated by an individual for a task (Silvia, Martin, & Nusbaum, 2009). However, many scoring
methods might be contaminated by fluency (Clark, Griffing, & Johnson, 1989). For example, flexibility
scores—that is, the count of the different conceptual categories from which ideas are generated—are usually
criticized because they are intrinsically linked to fluency scores. The same is true for uniqueness scores—that
is, the number of statistically rare ideas generated by a participant. The difficulty to disentangle fluency, flex-
ibility, and uniqueness in divergent thinking is probably another reason for the success of fluency scoring in
the study of divergent thinking.

WHY USING AN ACCURATE MEASUREMENT MODEL MATTERS
Because fluency scoring, albeit questioned, is an important approach to the measurement of creativity,

using appropriate psychometric approaches to fluency scores is highly beneficial to the measurement and
study of creativity, for various reasons. First, by using a measurement model that allows for items varying in
difficulty and discrimination separately, we can better study the relative importance of items. In other
words, using such a model, the researcher is informed about the items that represent best the latent variable
measured (controlling for difficulty) in a given item set. Second, using a better psychometric model
improves a researcher’s accuracy in evaluating an examinee’s ability. In other words, better measurement
models allow to better achieve the measurement of individual differences. Finally, better measurement mod-
els can be more practical, and, as we will later show in our supplementary analysis, allowing divergent think-
ing items to differ in discrimination notably allows to build models that account for specific/nuisance
factors—which in our example dataset, we use to account for different types of prompts (alternate uses,
consequences, etc.).

THE 2-PARAMETER POISSON COUNTS MODEL (2PPCM)
In contrast with models for binary, ordinal, and normally distributed responses, for which a wealth of

item response models and extensions have been developed (Shao, Janse, Visser, & Meyer, 2014), the leading
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response model used for fluency scores for modeling fluency scores remains (Baghaei & Doebler, 2019;
Forthmann, Celik, Holling, Storme, & Lubart, 2018; Forthmann et al., 2016) the Rasch Poisson Counts
Model (RPCM; Rasch, 1960). However, because the RPCM is a particular case of the 2-Parameter Poisson
Counts Model (2PPCM)—the model which we propose as a better alternative—we will first introduce the
2PPCM for clarity.

Probability distribution
Perhaps, the simplest way of introducing the 2PPCM is to discuss it as a Generalized Linear Item

Response Theory model (Mellenbergh, 1994), in which the link function is the natural logarithm function
and the item response distribution is a Poisson distribution of rate parameter λij. More specifically, the
2PPCM—like its special case the Rasch Poisson Counts Model and its extension the Bifactor 2PPCM (both
later discussed)—formulates that, for a person i and an item j, the probability P Xij ¼ k

� �
that a fluency score

Xij is equal to k (a non-negative integer), is a function of the rate parameter λij (comprised between 0 and
þ∞), such as:

P Xij ¼ k
� �¼ λkije

�λij

k!
(1)

Unlike the Normal distribution used in linear models, which has a continuous unbounded support, the
support of the Poisson distribution consists of non-negative integer numbers, and therefore matches the
observable modalities of fluency item scores. In addition, unlike in linear models where the variance of the
Gaussian errors is assumed to be constant (homoscedasticity), the Poisson distribution allows for a degree
of heteroscedasticity often observed in count data (since larger counts are often associated with larger error
variance). More specifically, in the Poisson distribution, the variance is equal to the rate (equidispersion).

Response model
In the 2PPCM, the rate λij is modeled as a function of the person’s latent ability θi—which, in this

parametrization is of variance fixed to 1 and mean fixed to 0—the item’s difficulty parameter bj (freely esti-
mated) and the item’s discrimination parameter aj (freely estimated), as given in the following equation:

λij ¼ ebjþajθi (2)

Equation 2 can also be written as a generalized linear model using the natural logarithm as the link func-
tion, which means that the 2PPCM can be called a log-linear model. It can be noted that, at constant dis-
crimination and for a given person, a higher bj implies higher expected counts. For this reason, we may
refer to bj as an easiness parameter rather than a difficulty parameter, as is often suggested. At constant easi-
ness, a higher item discrimination aj implies that an increase in the latent ability θi results in larger increases
in expected counts. The discrimination parameter therefore represents the strength of association between
the latent ability and the expected count (for a given item difficulty). Finally, let us note that the formula-
tion in Equation 2 is simplified to consider that all items have the same exposure (or offset), meaning that,
in the context of fluency items, all items have the same time limit. The 2PPCM can however easily be
adjusted for situations where items have different exposure parameters (in this case, different time limits),
through a variable exposure term, in a manner similar to the RPCM (see Baghaei & Doebler, 2019).

It should be noted that the 2PPCM is not per se a new model, in that it can notably be considered as an
instance of Generalized Linear Item Response Theory (GLIRT; Mellenbergh, 1994) or of Generalized Linear
Latent Mixed Models (GLAMM; Rabe-Hesketh & Skrondal, 2016; Rabe-Hesketh et al., 2004). In addition,
the use of factor structures in Poisson counts modeling has been previously discussed in a framework pro-
posed by Wedel, Böckenholt, and Kamakura (2003), under which the 2PPCM is subsumed. However, no
formal name has been proposed for this model. Since it is traditional in IRT to refer to models by how
many item parameters they comprise (e.g., the 2-parameter logistic model), we propose to refer to the
model presented in equation 2 as the 2-Parameter Poisson Counts Model (2PPCM).

Estimation
Unfortunately, only a few software packages allow to estimate the 2PPCM. Indeed, on one hand, many

Generalized Linear Mixed Models (GLMM) packages, such as “lme4” (Bates, Mächler, Bolker, & Walker,
2015), cannot estimate discrimination parameters, and therefore cannot estimate the 2PPCM ; on the other
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hand, many general purpose Structural Equation Modeling (SEM) software packages—for example, “lavaan”
(Rosseel, 2012)—can estimate discrimination parameters, but do not allow for Poisson distributed responses,
thus not allowing to fit the 2PPCM. Fortunately, the 2PPCM can still be estimated by the few (Generalized)
SEM packages that allow for Poisson counts models—such as Mplus (Muthén & Muthén, 1998) and Stata
(StataCorp, 2017)—and the few GLMM packages that allow to estimate discrimination parameters—such as
the “NLMIXED” package for SAS (see Sheu, Chen, Su, & Wang, 2005), and the packages “PLmixed” (Jeon
& Rockwood, 2018) and “brms” (Bürkner, 2017) for R.

Special case: The Rasch Poisson Counts Model (RPCM)
The Rasch Poisson Counts Model (RPCM) can be seen as a special case of the 2PPCM, where all dis-

crimination parameters are constrained to be equal. By constraining all discrimination parameters to be
equal, we obtain an equation for the rate λij that is similar to that of Equation 2, except that there is now
only one discrimination a for all items:

λij ¼ ebjþaθi (3)

An alternative identification consists in freeing the latent variance while constraining the common slope
parameter a to 1 (so as to practically remove it from the equation). While Generalized SEM software like
Mplus or Stata allow for both formulations, this alternative formulation allows to estimate the RPCM using
most GLMM software packages, including “lme4” (Baghaei & Doebler, 2019). Another alternative for
parametrization concerns the latent mean, which can be freely estimated instead of fixed, provided that a
constraint is added on the bj difficulty parameters. Besides being estimable using more software packages,
the RPCM also presents characteristic advantages of Rasch modeling that are lost when using variable dis-
crimination parameters, such as specific objectivity and allowing for the use of person total scores as suffi-
cient statistics for the estimation of ability (Masters & Wright, 1984; Rasch, 1960).

Extension: The bifactor 2PPCM (B2PPCM)
The 2PPCM (like the RPCM) is based on an assumption typical to latent trait models, known as the

assumption of local (or conditional) independence. This assumption states that the item scores should not
be related beyond them being indicators of the same latent trait (here divergent thinking fluency). In the
case of divergent thinking tasks, it is however frequent to use tasks that share similarities beyond being flu-
ency tasks. More specifically, some tasks may share similarities in their prompts (e.g., instances of a category
or alternate uses of an object) or domains (e.g., figural or verbal), resulting in local dependencies between
tasks that share such similarities.

Because of these potential violations, we propose a bifactor extension of the 2PPCM, which we refer to
as the Bifactor 2PPCM (B2PPCM), to account for local dependencies. This model, based on the bifactor
modeling approach (Holzinger & Swineford, 1937; Reise, 2012), differs in structure from the previously dis-
cussed (unidimensional) 2PPCM, in that, in this model, in addition to the general latent ability, additional
specific factors are specified to represent communalities between tasks (e.g., prompts, domains). In the
B2PPCM, for a person i and an item j, the rate parameter of the Poisson distribution λij is modeled as a
function of the person’s latent attribute on the general factor θi, the person’s latent attribute on the specific
factor θ0i, the difficulty/intercept item parameter bj, the general discrimination/slope parameter aj, and the
specific discrimination/slope parameter a0j, as showed in Equation 4. All correlations between latent factors
(general and specific) are fixed to 0.

λij ¼ ebjþajθiþa0
j
θ0i (4)

The B2PPCM is a structural extension of the 2PPCM that can be used to represent task clusters. We
provide an example use in this paper where we use 3 specific factors to represent clusters of tasks that share
similar prompts (alternate uses, instances of a category and consequences).

WHY WOULD WE IGNORE ITEM DISCRIMINATION DIFFERENCES IN DIVERGENT THINKING
TASKS?

The RPCM is undoubtedly the most discussed response model for count data. However, in the RPCM,
there are no (free) item discrimination parameters, meaning that items are only characterized by one param-
eter, representing their easiness. Why would creativity researchers rely on this assumption in the case of
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Poisson measurement models? We here tentatively advance several reasons, and discuss their legitimacy in
the case of divergent thinking tasks.

Wrong reason #1: It is traditional to focus on difficulty only
The IRT tradition primarily emphasizes how item difficulty should be first considered in the modeling

of item responses and the estimation of psychological constructs. This translates into how some modeling
strategies only consider 1-parameter Rasch models, and into how most model comparisons strategies start
with these models, before sequentially adding parameters—generally starting with a slope/discrimination
parameter (Birnbaum, Lord, & Novick, 1968).

Still, while Rasch models have undoubtedly revolutionized psychometric research, the fact that Rasch
models are historically prominent is not a valid argument, especially if we consider that, for binary items, 1-
parameter models are regularly empirically outperformed by models that are more flexible, especially models
that account for item differences in discrimination (e.g., Storme, Myszkowski, Baron, & Bernard, 2019). Fur-
ther, in the case of more traditional (linear) measurement models, the assumption that items do not vary in
discrimination/loadings is generally regarded as simply not realistic (Trizano-Hermosilla & Alvarado, 2016),
as illustrated by the common use of factor analysis.

Wrong reason #2: Most GLMM estimation packages do not allow otherwise
As we previously discussed, the RPCM can be estimated using most GLMM estimation packages

(Baghaei & Doebler, 2019), while the 2PPCM can be estimated by fewer packages. Over the years, GLMM
estimation packages have become increasingly popular and available, notably with the R package “lme4”
(Bates et al., 2015), making Rasch models more commonly implemented. Still, the lack of availability (and
ease of use) of packages, although problematic, should not limit the development or use of response models.
Besides, as previously discussed, a growing number of packages are capable of estimating Poisson counts
models with a discrimination parameter.

Wrong reason #3: Items are equally discriminant
The Rasch measurement tradition does not focus so much on fitting the data, but more so on building

instruments consistent with Rasch models—in the case of the RPCM, this implies creating fluency tasks with
equal discrimination. Certainly, in some situations, it is reasonable to assume that different fluency tasks
could be equally discriminant theoretically, because we can clearly define the latent variable being measured
and affirm that the items are equally distant to it. For example, if one creates a test aiming to measure ver-
bal fluency, it can be theoretically sustained that generating words that start with the letter c is equally
related to verbal fluency as generating words that start with the letter g, and thus that the two tasks, by con-
struction, do not differ in discrimination—only in difficulty —thereby building an instrument that meets
the assumptions of Rasch modeling.

However, is this a realistic expectation of tasks like divergent thinking tasks? If one creates a test aiming
to measure divergent thinking fluency, then one would likely use various prompts, such as prompts for
alternate uses of an object and prompts for instances of a category. These variations in types of prompts
have been discussed as tapping into different cognitive processes (Hass & Beaty, 2018), making it unlikely
that two items with different prompts would reflect equally a common latent variable. Further, even with
the same prompt, there are important differences between tasks. If we take the example of two tasks
prompting for alternate uses of a knife or a brick (used in the present paper), the two tasks may tap into
different domains of expertise—speculatively, masonry for the brick and cooking or camping for the knife.
Further, these domains of expertise may be more or less present for different tasks—following our example,
perhaps the expertise effect of masonry could be less than the effect of cooking, since bricks could have
fewer uses in masonry than knives in cooking. In addition to this, the two tasks may engage different per-
sonality traits. Using our previous brick and knife examples, individuals with higher social inhibition may
see the expression of their creativity limited with the knife prompt (they may, for example, refrain from
responding with violent uses of a knife), but less so with the brick prompt. As a consequence, we argue that
there are so many substantial item specificities (from the domain, the type of prompt, etc.) in divergent
thinking tests and variations in how different tasks engage psychological attributes (expertise, personality,
cognitive abilities), that it is unrealistic to affirm (without empirical investigation) that a set of divergent
thinking fluency tasks equally reflect a common latent variable—in other words, that they are have equal
discriminations. Therefore, we argue that researchers should use a model that does not make this
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assumption—such as the 2PPCM—or at least examine whether this assumption is supported empirically—
which can be done formally by comparing the fit of the RPCM and the 2PPCM.

The aim of this paper
To provide an empirical example of the benefits of a 2-Parameter Poisson Counts Model (2PPCM) over

the RPCM, we reanalyzed a publicly available prototypical dataset with several fluency task scores—that
were not necessarily assumed to differ (or to not differ) in discrimination—and a reasonably large sample
size. In this dataset, we compare the fit of various models to the data, including a Poisson baseline model
where items are perfectly interchangeable/parallel, the RPCM and the 2PPCM. We hypothesized that the
2PPCM would outperform the RPCM, which would itself outperform the baseline model. In addition, we
discuss how the B2PPCM can be used to detect and account for local item dependencies.

METHOD
DATASET

We used the data from a previous research effort on creative cognition (Silvia, 2008a, 2008b; Silvia et al.,
2008), reused with permission from the author. The dataset consisted of the responses of 242 college stu-
dents to 6 divergent thinking fluency tasks. The participants were successively asked to provide as many cre-
ative (a) uses for a brick, (b) round objects, (c) effects if people no longer had to sleep, (d) uses for a knife,
(e) things that make a noise, and (f) consequences if everyone shrank to be 12-inches tall. The participants
were encouraged to give as many creative responses as possible and had 3 minutes for each task.

STATISTICAL ANALYSIS
The aim of this paper being to demonstrate how a 2-parameter extension of the RPCM is a more accu-

rate item response modeling strategy than existing alternatives, the statistical analysis for this paper consisted
in fitting different item response models and comparing their fit to the data. These models were (a) a base-
line Poisson model—which essentially ignores item differences, since in this model all items are constrained
to have the same easiness and discrimination—(b) the RPCM—in which the items are allowed to vary in
easiness but not discrimination—and (c) the 2PPCM—in which items are allowed to vary in both easiness
and discrimination.

In addition, we explored for the presence of specific/nuisance factors using the B2PPCM. The B2PPCM
was initially specified with 3 specific factors, representing similarities between prompts (alternate uses,
instances, and consequences). Based on the estimates of the B2PPCM, a simpler bifactor model—referred to
as the B2PPCM’—was estimated, with only one specific factor corresponding to instances.

As is traditionally done in IRT modeling, the variance of θi (and specific factors θ0i for the bifactor mod-
els) was constrained to 1 to identify all models. Although we previously discussed alternative parametriza-
tions, this choice was motivated by the fact that it allows to interpret θi on the standard Normal scale—as
one would interpret a z-score.

MODEL ESTIMATION
All models were fit to the data using Mplus 8.4 (Muthén & Muthén, 1998). The syntax for fitting the

models is provided as Appendix S1, along with the data set formatted in wide format, and prepared for
direct analysis.

MODEL COMPARISONS
The models were compared using Likelihood Ratio Tests as well as information criteria—we used the

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for which a smaller value
indicates a better fit. These procedures for model fit comparisons are typically used in Item Response The-
ory modeling, including for Poisson counts models (Baghaei & Doebler, 2019; Forthmann, Gühne, & Doe-
bler, 2019).

Based on the AIC and BIC of all models, we also computed the difference between the smallest AIC
(and BIC) and the AIC (and BIC) of each model (often referred to as Δ AIC and ΔBIC), as well as the AIC
weights (also known as Akaike Weights) and BIC weights (also known as Schwartz weights) for further
interpretation. Although these procedures are more extensively discussed in the multimodel inference litera-
ture (Burnham & Anderson, 2004; Wagenmakers & Farrell, 2004), ΔAIC and ΔBIC values below 2 indicate
substantial support for the model, values between 2 and 4 indicate strong support for the model, values
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between 4 and 7 indicate considerably less support for the model, and values above 10 indicate essentially
no support. The model with the smallest AIC (or BIC) has a trivial ΔAIC (or ΔBIC) of 0. AIC (and BIC)
weights sum to 1, and give an estimate of the relative evidence in favor of each model in the candidate set
of models—values close to 1 indicating strong support for the model, and values close to 0 indicating that
the model is not supported. Finally, as recommended by Baghaei and Doebler’s (2019) for the RPCM, we
also used boxplots of the Pearson residuals for the RPCM and the 2PPCM for each item, good item-model
fit being indicated by that residuals roughly contained between −2 and +2.

MODEL INTERPRETATION
Plotting item response functions is central to the understanding of item response models (Muraki,

1993). Item response function plots essentially graph the expected response—in binary logistic IRT, it is typ-
ically the expected probability of passing an item, but here, it is the expected count of ideas—as a function
of the latent trait estimate—which, as we pointed, is typically scaled similarly to a z-score. We plotted item
response functions for all the items, overlaying the RPCM and 2PPCM for comparison.

EQUIDISPERSION
In Poisson models, it is assumed that the variance and the expectation are equal, an assumption referred

to as equidispersion. When the error variance is smaller than the expectation—a phenomenon called un-
derdispersion—then the standard errors and confidence intervals of the model are conservative (Forthmann
et al., 2019). A bigger—and more actively debated—problem occurs when there is more variability than
expected—a phenomenon called overdispersion. When overdispersion occurs, then the standard errors and
confidence intervals of the model are not conservative enough—in other words, the estimates appear more
reliable than they actually are. To assess dispersion, we computed the ϕ coefficient, which is the ratio of the
model implied variance to the expectation of the mean, using the formula provided in Baghaei and Doe-
bler’s (2019) paper on estimating the RPCM. A value of 1 indicates equidispersion; a value lower than 1
indicates underdispersion; a value higher than 1 indicates overdispersion. As suggested by the authors, we
also used scatterplots of the Pearson residuals as a function of the scores predicted by the models. As
reported previously regarding the RPCM (Doebler & Holling, 2016), we also computed bootstrapped per-
centile 95% confidence intervals (with 5,000 resamples) for the ϕ coefficient.

RELIABILITY
A key difference between CTT and IRT is that IRT conceptualizes reliability as conditional upon the

latent attribute θi. A corollary of this is that different persons have different reliability estimates. Using the
person estimates and their standard errors, we computed person-reliability ρθi and group-level reliability ρθ
(computed as the average of the observed person-reliabilities ρθi ). We then plotted the conditional reliability
of the RPCM and 2PPCM person estimates as a function of the latent trait. Similar to previous research
regarding IRT reliability estimates (Myszkowski & Storme, 2017, 2018), and similar to what was done in the
present study regarding overdispersion, we computed bootstrapped percentile 95% confidence intervals
(with 5,000 resamples) for group-level reliability estimates. Since reliability is based on which model is
selected, we also computed a model-averaged reliability estimate, consisting in an average of the reliability
estimates, weighted by the model (Akaike and Schwartz) weights previously computed. We refer to these
estimates as the Akaike model-averaged reliability and the Schwartz model-averaged reliability.

RESULTS
MODEL FIT

The AIC and BIC of all models, along with their associated weights, are reported in Table 1. As hypothe-
sized, the RPCM fit significantly better than the baseline model (χ2(5) = 485.59, p < .001). Because the only
difference between the baseline model and the RPCM is that the RPCM accounts for item differences in dif-
ficulty, this result implies that items significantly differed in difficulty. Boxplots of the distribution of the
Pearson residuals per item are presented in Figure 1. For the RPCM, residuals were for the most part
between −2 and +2, indicating adequate fit.

The item parameters for the RPCM are presented in Table 2. The significance of the item differences in
difficulty is also reflected in the non-overlap between the confidence intervals of certain intercept estimates
—for example the confidence intervals of the intercepts of items 1 and 2 do not overlap. In this case, it
means that item 2 was significantly easier than item 1.
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TABLE 1. Model fit statistics

Model Log-likelihood AIC ΔAIC w(AIC) BIC ΔBIC w(BIC)

Baseline −3952.629 7909.26 585.87 0.00 7916.24 544.00 0.00
RPCM −3709.835 7433.67 110.28 0.00 7458.09 85.86 0.00
2PPCM −3657.525 7339.05 15.66 0.00 7380.92 8.69 0.01
B2PPCM −3647.695 7331.39 8.00 0.02 7394.19 21.96 0.00
B2PPCM’ −3647.693 7323.39 0 0.98 7372.23 0 0.99

AIC: Akaike Information Criterion of the model considered; ΔAIC : Difference between the AIC of the
model considered and the smallest AIC; w(AIC) : Akaike weight of the model considered (rounded); BIC :
Bayesian Information Criterion of the model considered; ΔBIC : Difference between the BIC of the model
considered and the smallest BIC; w(AIC) : Schwartz weight of the model considered (rounded).

FIGURE 1. Distribution of the residuals of the RPCM and 2PPCM.
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As hypothesized, whether the Likelihood Ratio Tests or the information criteria were considered, the
2PPCM significantly outperformed the RPCM – χ2(5) = 104.62, p < .001. Because the only difference
between the two models is that, in addition to differences in difficulty, the 2PPCM accounts for item differ-
ences in discrimination, this model comparison can be used as a formal test of the RPCM assumption that
items are equally discriminant. Here, its result implies that this assumption is violated—in other words,
items significantly differed in discrimination. For the 2PPCM, residuals were distributed similarly to those
of the RPCM and were also for the most part between −2 and + 2, indicating good fit.

The item parameters for the 2PPCM are presented in Table 3. The significance of the item differences in
discrimination is also reflected in the non-overlap between the confidence intervals of certain slope esti-
mates.

ITEM RESPONSE FUNCTIONS
The item response functions, which present the expected fluency scores as a function of the latent ability,

are presented in Figure 2. They show the differences between the RPCM and the 2PPCM. As can be
expected due to the exponential form of the two models, the largest differences are observed at high levels
of the latent trait. For example, for a person with a θ level of 3 (as previously mentioned, due to how the
models were identified, this can be interpreted like a z-score of 3), the 2PPCM predicts that the person
would produce 39 ideas for item 5, while the RPCM would predict 29 ideas. For the same latent level, the
2PPCM would predict on average 12 ideas for item 3, while the RPCM would predict on average 19 ideas.

TABLE 2. Parameter estimates of the RPCM

Item Parameter Estimate SE z p 95% CI

1 Slope (all constrained equal) 0.333 0.018 18.131 <.001 [0.297;0.369]
Intercept 1.919 0.032 59.422 <.001 [1.856;1.982]

2 Slope (all constrained equal) 0.333 0.018 18.131 <.001 [0.297;0.369]
Intercept 2.140 0.030 70.170 <.001 [2.080;2.199]

3 Slope (all constrained equal) 0.333 0.018 18.131 <.001 [0.297;0.369]
Intercept 1.847 0.033 56.030 <.001 [1.782;1.911]

4 Slope (all constrained equal) 0.333 0.018 18.131 <.001 [0.297;0.369]
Intercept 1.887 0.033 57.914 <.001 [1.823;1.951]

5 Slope (all constrained equal) 0.333 0.018 18.131 <.001 [0.297;0.369]
Intercept 2.364 0.029 81.680 <.001 [2.307;2.420]

6 Slope (all constrained equal) 0.333 0.018 18.131 <.001 [0.297;0.369]
Intercept 1.820 0.033 54.822 <.001 [1.755;1.886]

TABLE 3. Parameter estimates of the 2PPCM

Item Parameter Estimate SE z p 95% CI

1 Slope 0.255 0.028 9.024 <.001 [0.199;0.310]
Intercept 1.943 0.030 65.352 <.001 [1.884;2.001]

2 Slope 0.467 0.033 14.171 <.001 [0.402;0.531]
Intercept 2.088 0.039 54.230 <.001 [2.013;2.164]

3 Slope 0.199 0.028 7.004 <.001 [0.143;0.255]
Intercept 1.883 0.028 66.225 <.001 [1.827;1.939]

4 Slope 0.332 0.030 10.986 <.001 [0.273;0.392]
Intercept 1.888 0.033 56.382 <.001 [1.823;1.954]

5 Slope 0.450 0.031 14.745 <.001 [0.390;0.510]
Intercept 2.320 0.036 64.426 <.001 [2.249;2.390]

6 Slope 0.211 0.028 7.418 <.001 [0.156;0.267]
Intercept 1.854 0.029 63.629 <.001 [1.797;1.911]
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EQUIDISPERSION
The baseline model was overdispersed (ϕbaseline ¼ 1:27,95%CI 1:15,1:40½ �), while both the RPCM

(ϕRPCM ¼ 0:85,95%CI 0:79,0:91½ �) and the 2PPCM (ϕ2PPCM ¼ 0:78,95%CI 0:72,0:84½ �) showed underdisper-
sion. Figure 3 shows the Pearson residuals as a function of the predicted for each item in both the RPCM
and 2PPCM, and confirms this finding. This underdispersion implies that both the reliability estimates of
the RPCM and 2PPCM are inaccurate, but likely conservative.

RELIABILITY
Overall, both models yielded reliable person estimates, with a slightly higher reliability for the 2PPCM

(ρθ=.813, 95% CI [.806, .820]) as opposed to the RPCM (ρθ = .795, 95% CI [.789, .801]). In Figure 4, we
present a plot of the reliability estimates for the RPCM and 2PPCM models.

FIGURE 2. Item response functions (predicted counts) of the RPCM and the 2PPCM.
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ACCOUNTING FOR TASK CLUSTERING WITH A BIFACTOR MODEL
The B2PPCM significantly outperformed the 2PPCM –χ2(6) = 19.66, p = .003. The a0 parameter esti-

mates (which are the specific factor loadings) were very close to zero for the alternate uses and the conse-
quences factor and were only significant for the instances factor. Therefore, to better stabilize estimation and
more parsimoniously fit the data, we removed from the model the alternate uses and consequences specific
factors, making a model referred to as the B2PPCM’. Like the B2PPCM, the B2PPCM’ significantly outper-
formed the 2PPCM –χ2(2) = 19.66, p < .001. As confirmed by the B2PPCM not outperforming the simpler

FIGURE 3. Residuals as a function of the predicted for the RPCM and 2PPCM.
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B2PPCM’—χ2(4) = 0.00, p > .999—and by the AIC and BIC of the two models, the B2PPCM’ appeared as
the model with the best fit on this data among all the tested models.

These results suggest that local dependencies due to similar prompts may arise in some situations (the
instances in this case) but not all (the alternate uses and consequences here), and thus that the use of a
bifactor structural model to account for these hypothetical local dependencies may or may not be useful
depending on types of task used. The estimates of the B2PPCM and the B2PPCM’ are reported respectively
in Table 4 and Table 5. Like previously, we report the boxplots of the residuals per item for both models in
Figure 5.

Like the RPCM and the 2PPCM, the B2PPCM and B2PPCM’ were underdispersed
(ϕ2BBPCM ¼ 0:65,95%CI 0:61,0:70½ �,ϕ2BBPCM0 ¼ 0:65,95%CI 0:61,0:70½ �), implying that their reliability estimates
were also conservative. This was corroborated by the visual inspection of the residuals as a function of the
predicted scores for both models, presented in Figure 6. The average reliability (for the general factor) was
.694 for the B2PPCM (95% CI [.687, .700]) and .693 for the B2PPCM’ (95% CI [.686, .699]).

The Akaike model-averaged reliability was .693 and the Schwartz model-averaged reliability was .694.
The difference between these estimates and the reliability estimates of the RPCM and 2PPCM suggests that,
when the assumption of local independence is violated (like here), using these models to estimate reliability
could lead to misestimating reliability quite substantially. As a side note, Cronbach’s α, which is the proce-
dure that researchers often use as a default to estimate reliability, would provide an estimate of reliability of
.81—which is also considerably different from the model-averaged reliability estimates obtained here.

DISCUSSION
In certain situations, fluency tasks can be so similar that one can assume that all fluency scores are

equally related to the latent construct. Nevertheless, we argue that divergent thinking fluency scores do not
fall in this category, in that, beyond their variation in difficulty, different tasks could reflect divergent

FIGURE 4. Conditional reliability for the RPCM and 2PPCM.
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thinking to a different degree (e.g., they may tap into different cognitive processes, engage different person-
ality traits, or involve specific domain knowledge). Because items may not be equally discriminant, the
RPCM may be inappropriate. The proposed alternative—a 2-Parameter Poisson Counts Model—allows dis-
crimination to vary per item. In our example dataset (Silvia, 2008a, 2008b; Silvia et al., 2008), it significantly
outperformed the RPCM, indicating that discrimination was indeed variable by item. In addition, we intro-
duced a bifactor extension of the 2PPCM, which allows to identify and account for item clustering (or local
dependencies), and which outperformed both the RPCM and the 2PPCM in this example.

From the results obtained in this example, we suggest that, before using the RPCM, researchers question
if a model with variable discrimination, such as the 2PPCM, is more appropriate. One can decide to use the
RPCM rather than the 2PPCM if the divergent thinking tasks are assumed to be equivalent by design, but
such an assumption should at least be clearly discussed. In the example at hand, justifying theoretically that
all tasks reflect divergent thinking fluency to the same degree is hardly defensible, but in other cases (for

TABLE 4. Parameter estimates of the B2PPCM

Item Parameter Estimate SE z p 95% CI

1 Slope (general) 0.274 0.029 9.597 <.001 [0.218;0.330]
Slope (alternate uses) 0.002 0.056 0.033 .974 [−0.107;0.111]
Intercept 1.937 0.031 63.329 <.001 [1.877;1.997]

2 Slope (general) 0.413 0.040 10.449 <.001 [0.336;0.491]
Slope (instances) 0.235 0.052 4.499 <.001 [0.132;0.337]
Intercept 2.084 0.039 53.347 <.001 [2.008;2.161]

3 Slope (general) 0.220 0.030 7.223 <.001 [0.160;0.280]
Slope (consequences) 0.027 0.206 0.133 0.894 [−0.376;0.431]
Intercept 1.877 0.030 63.574 <.001 [1.820;1.935]

4 Slope (general) 0.339 0.030 11.209 <.001 [0.280;0.399]
Slope (alternate uses) 0.002 0.053 0.031 .975 [−0.102;0.106]
Intercept 1.884 0.034 55.651 <.001 [1.818;1.951]

5 Slope (general) 0.387 0.038 10.289 <.001 [0.313;0.461]
Slope (instances) 0.258 0.043 5.963 <.001 [0.174;0.343]
Intercept 2.313 0.037 62.535 <.001 [2.241;2.386]

6 Slope (general) 0.233 0.029 7.939 <.001 [0.175;0.290]
Slope (consequences) 0.014 0.113 0.125 .900 [−0.208;0.237]
Intercept 1.849 0.030 61.668 <.001 [1.790;1.907]

TABLE 5. Parameter estimates of the B2PPCM’

Item Parameter Estimate SE z p 95% CI

1 Slope (general) 0.275 0.029 9.605 <.001 [0.219;0.331]
Intercept 1.937 0.031 63.356 <.001 [1.877;1.997]

2 Slope (general) 0.412 0.039 10.497 <.001 [0.335;0.489]
Slope (instances) 0.237 0.051 4.656 <.001 [0.137;0.337]
Intercept 2.086 0.039 53.369 <.001 [2.009;2.162]

3 Slope (general) 0.221 0.029 7.557 <.001 [0.164;0.278]
Intercept 1.878 0.029 64.224 <.001 [1.821;1.935]

4 Slope (general) 0.339 0.030 11.213 <.001 [0.280;0.399]
Intercept 1.885 0.034 55.699 <.001 [1.819;1.952]

5 Slope (general) 0.386 0.037 10.346 <.001 [0.313;0.461]
Slope (instances) 0.260 0.043 6.111 <.001 [0.177;0.343]
Intercept 2.314 0.037 62.571 <.001 [2.242;2.387]

6 Slope (general) 0.233 0.029 8.053 <.001 [0.177;0.290]
Intercept 1.849 0.030 61.713 <.001 [1.790;1.908]
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example, for verbal fluency tasks), there could be substantive reasons to prefer the RPCM. Alternatively, a
straightforward way to empirically test the assumption that items are equally discriminant is to compare the
2PPCM and the RPCM. If the 2PPCM outperforms the RPCM, then the assumption is violated and a
2PPCM is preferable.

Both the RPCM and the 2PPCM make the assumption that items are locally independent. In this exam-
ple, we found that this assumption was violated, as bifactor extensions of the 2PPCM were able to identify a
specific factor corresponding to the instances tasks. Further, we found that failing to account for such local
dependencies resulted in overestimating reliability. Overall, the results suggest that local dependencies should
be inspected upon fitting the RPCM or the 2PPCM, especially when communalities are suspected between
tasks (e.g., some tasks sharing a similar prompt or subdomain). If such local dependencies are found, a
bifactor 2PPCM is a more appropriate modeling approach.

FUTURE DIRECTIONS
The present research could find several extensions. First, a limitation for this study is that we only pre-

sented the 2PPCM and its bifactor extension, and applied them to an example dataset, but we did not inves-
tigate how these models perform in various conditions—notably for different sample sizes. Further
simulation studies may focus on how the 2PPCM and its bifactor extension can be accurately estimated
under various conditions of sample size, number of items, and dimensionality.

FIGURE 5. Distribution of the residuals of the B2PPCM and B2PPCM’.
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Like the RPCM, the 2PPCM and the B2PPCM are models that can directly be used to obtain person
estimates (which can therefore replace sum/average scores) and to estimate reliability—therefore replacing
more traditional techniques like Cronbach’s α. However, a practical limitation of this study is the lack of
statistical packages that allow to estimate the 2PPCM and the B2PPCM. While the RPCM can be estimated
by most GLMM packages—such as “lme4” for R—it is not the case for the 2PPCM, which requires packages
that are both capable of fitting Poisson counts models and factor structures. For the 2PPCM, researchers
may turn to the “NLMIXED” package for SAS, or the packages “PLmixed” (Jeon & Rockwood, 2018) and

FIGURE 6. Residuals as a function of the predicted for the B2PPCM and B2PPCM’.
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“brms” (Bürkner, 2017) for R, which allow for multilevel Poisson counts models with factor structures. A
recent paper (Bürkner, 2020) presents how to use “brms” for item response models with discrimination
parameters, which can probably be repurposed to fit the 2PPCM. Still, unfortunately and to the best of our
knowledge, these packages currently would not allow to fit the B2PPCM, implying that researchers would
have to use commercial software capable of estimating generalized structural equation models like Mplus or
Stata. Further research may focus on how to make the estimation of the 2PPCM and the B2PPCM feasible
and practical using various software packages, by comparing the capabilities and performance of different
software under different conditions (such as different sample sizes and dimensionality).

The 2PPCM and B2PPCM are here discussed as better fitting alternatives to the RPCM. However, other
models than the RPCM have been suggested for count responses. Further research may focus on comparing
the 2PPCM and B2PPCM with other developments of Poisson response models, such as logistic Poisson
models (Doebler, Doebler, & Holling, 2014), Conway–Maxwell–Poisson models (Forthmann et al., 2019)
and Zero-Inflated Poisson models (Wang, 2010), in terms of empirical fit, estimation strategies, and inter-
pretability.

In addition, we centered our work on how to account for item differences in discrimination when mod-
eling and estimating the latent construct of fluency, but the 2PPCM and B2PPCM could further be used to
analyze the items themselves, for example for test construction purposes. Researchers may notably be inter-
ested in using such a framework to identify tasks (or categories of tasks) that are particularly indicative of
divergent thinking fluency. To do so, they may also be interested in ruling out specific factors due to item
clustering using the bifactor approach.

The RPCM, 2PPCM, and B2PPCM showed underdispersion in our example dataset, as showed by the
confidence intervals of the ϕ coefficient not including 1. Although reliability estimates tend to be more con-
servative in the presence of underdispersion, this result shows that the assumption of equidispersion was
not met in the present study, which indicates that the absolute fit of all the models tested remained prob-
lematic. Replications in other datasets could reveal whether this issue is specific to this dataset or general to
fluency scores in divergent thinking tasks.

Another limitation to overcome in the future is that the 2PPCM and B2PPCM, like the RPCM, assume
a constant rate of responding for a given person and item. This assumption may be further discussed, espe-
cially as it could be pointed that, in divergent thinking tasks notably, examinees may have fluctuations of
response rate, due to phenomena such as fatigue, attention fluctuation or variations of emotional states
(Barbot, 2018). Challenging this assumption could lead to the development of Poisson count models with
dynamic rate. Related to the issue of variable rate, another important assumption of the 2PPCM and RPCM
is that events—in our example, reporting an idea—are independent (for a given individual and item). This
assumption may also be challenged, especially in the case of idea generation: It may be that ideas tend to
come in batches—an idea possibly increasing the rate of the next few ideas—rather than as independent
events.

Finally, another possible extension of the model is the use of collateral information in estimation. The
count of ideas is in some cases only one of the sources of information about the individual. In the case of
divergent thinking tasks, for example, it is frequent practice to evaluate the originality or creativity of the
ideas rating them. Other scoring techniques have been developed, such as asking the respondents to rank
their own ideas (Silvia, 2008b), using the semantic distance between ideas (Hass, 2017b; Hass & Beaty, 2018;
Heinen & Johnson, 2018) or using an overall scoring of all ideas of an examinee altogether (Silvia et al.,
2009). Further research may focus on how fluency scoring with the 2PPCM may integrate with other scoring
procedures.

CONCLUSION
We propose the 2-Parameter Poisson Counts Model and its Bifactor extension as more flexible alterna-

tives to the traditionally used RPCM to model divergent thinking fluency scores. Certainly, the 2PPCM may
not be estimable by most GLMM software like the RPCM is (Baghaei & Doebler, 2019), but the RPCM
makes a strong assumption about the items—that their only differences lie in their difficulties—an assump-
tion that we argue to be highly questionable in the context of divergent thinking tasks, and which we show
to be violable empirically.
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made in the present article, is also made available as Appendix S1.
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